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Abstract

Many autonomous vehicles rely on an array of sen-
sors for safe navigation, where each sensor captures dif-
ferent visual attributes from the surrounding environment.
For example, a single conventional camera captures high-
resolution images but no 3D information; a LiDAR provides
excellent range information but poor spatial resolution; and
a prototype single-photon LiDAR (SP-LiDAR) can provide
a dense but noisy representation of the 3D scene. Although
the outputs of these sensors vary dramatically (e.g., 2D im-
ages, point clouds, 3D volumes), they all derive from the
same 3D scene. We propose an extensible sensor fusion
framework that (1) lifts the sensor output to volumetric rep-
resentations of the 3D scene, (2) fuses these volumes to-
gether, and (3) processes the resulting volume with a deep
neural network to generate a depth (or disparity) map. Al-
though our framework can potentially extend to many types
of sensors, we focus on fusing combinations of three imag-
ing systems: monocular/stereo cameras, regular LiDARs,
and SP-LiDARs. To train our neural network, we generate
a synthetic dataset through CARLA that contains the indi-
vidual measurements. We also conduct various fusion abla-
tion experiments and evaluate the results of different sensor
combinations.

1. Introduction

An important challenge faced by the self-driving car in-
dustry is safety. When driving down a road, an autonomous
vehicle needs to reliably “see” its surroundings in order to
make safe decisions. Moreover, it is important to drive re-
liably in adverse weather conditions (rain, snow, or fog),
operate at different times of the day under different lighting
conditions (day or night), and detect pedestrians, bicyclists,
or other cars in the presence of partial occluders.

Many self-driving cars are therefore equipped with
a wide variety of sensors, such as cameras, LiDARs,
RADARs, and IMUs, to perceive their 3D environment re-

∗Now affiliated with Microsoft.

Figure 1: Disparity maps generated with our framework,
using two sensor combinations: LiDAR only (top), and the
fusion of a SP-LiDAR, a stereo camera, and a LiDAR (bot-
tom). The highlighted insets on the right show the preser-
vation of fine details when combining multiple sensors to-
gether. Note that we report all results in terms of dispar-
ity, because our network builds on PSMNet [4]: a stereo
matching framework. All depth values (e.g., measurements
captured with the LiDARs) are therefore converted into dis-
parity values.

liably. The high-resolution 2D images from conventional
cameras can be used to identify cars, signs, or pedestrians
on the road, but provide poor depth perception by them-
selves. LiDARs are ideal for detecting the 3D position of
objects on the road, but provide limited spatial resolution.

New computational sensors are also on the horizon,
such as the emergence of single-photon LiDARs (SP-
LiDAR) [20]. A SP-LiDAR uses an extremely-sensitive
photo-detector known as a single-photon avalanche diode
(SPAD) [29], which can detect 3D points with far fewer



photons than a conventional multi-photon LiDAR. How-
ever, SP-LiDARs are also sensitive to ambient photons (e.g.,
light emitted by our sun), resulting in both denser but noisier
measurements. SP-LiDARs have been used for 3D imaging
at 10 km range [17, 28], sensing through hazy environments
(e.g., fog or murky water) [22, 31], and even imaging ob-
jects hidden around corners [27].

Combining sensory data from multiple sources helps to
overcome the limitations of any one sensor. In this work,
we propose an extensible framework for fusing the output
of a heterogeneous sensor array. Our approach involves lift-
ing the sensors’ measurements (e.g., a 2D image, a collec-
tion of 3D points, or a noisy 3D volume) to a temporary 4D
volume, referred to as a cost volume. Similar lifting opera-
tions have been used for 3D geometric reasoning tasks [33],
where the volume can be interpreted as a voxelized repre-
sentation of the scene. We process the resulting cost volume
with a deep neural network to extract the disparity map of
a scene, as shown in Figure 1. Note that we report results
in terms of disparity, because the basis for our solution is a
stereo matching framework called PSMNet [4].

Our framework is able to fuse different sensor combi-
nations, including monocular cameras, stereo cameras, Li-
DARs, and SP-LiDARs. Because all these sensor combi-
nations do not exist in current available datasets, we simu-
late our data using CARLA [10], an open source simulated
environment that supports development of autonomous ur-
ban driving systems. We also experiment with different
signal-to-background noise ratios (SBR) for SP-LiDARs,
and find that fusion with SP-LiDAR produces good results
even when subjected to very poor SBR conditions.

The key contributions of our work include

• an extensible fusion framework for heterogeneous sen-
sor arrays that lift measurements into a common volu-
metric representation;

• a new simulated dataset that contains measurements
for stereo cameras, LiDARs, and SP-LiDARs; and

• an evaluation of sensor fusion on the task of disparity
estimation using different combinations of sensors, in-
cluding a monocular camera, stereo camera, LiDAR,
and SP-LiDAR.

2. Related Work
2.1. 3D Sensors used in Autonomous Vehicles

Light Detection and Ranging (LiDAR) systems [12] are
commonly used in autonomous vehicles. These systems
work by firing a pulse of light at an object, measuring the
time required for the light to return in response, and us-
ing this response to infer the 3D position and reflectivity
of the object. The photodectors used in conventional Li-
DARs may require upwards of hundreds or thousands of

photons to measure a single 3D point. The LiDAR repeats
this process multiple times while scanning the environment
to produce a 3D point cloud. These point clouds tend to be
sparse however, especially for objects far from the sensor;
see Figure 3 for an example.

A single-photon LiDAR (SP-LiDAR) uses a single-
photon sensor (e.g., a single photon avalanche diode, or
SPAD [29]) to produce measurements from individual pho-
tons. SP-LiDARs are therefore much more efficient than
conventional multi-photon LiDARs, and can produce higher
resolution scans and detect objects at longer distances [17,
34, 35]. Unfortunately, SP-LiDARs are also far more sen-
sitive to the ambient light present in an environment (e.g.,
sunlight), resulting in many spurious 3D points. Recovering
3D shape thus requires censoring the noisy photon present
in the measurements [20].

In this work, we focus on fusing both current and emerg-
ing LiDAR systems with mono or stereo camera systems.
We aim to combine the best features of all available sensors,
by leveraging the high-spatial resolution of regular cameras
and 3D information recovered from LiDARs.

2.2. Sensor Fusion for Vision tasks

Besides 3D sensing, many works aim to solve higher-
level vision tasks, such 3D object detection and segmen-
tation. Prior approaches have focused on using a single
imaging modality, such as monocular cameras [6], stereo
cameras [7], and LiDARs [24, 41]. More recently, pseudo-
LiDAR based approaches [40, 37] have also shown signifi-
cant improvements for 3D object detection; these methods
convert the depth maps from a stereo camera into 3D point
cloud, and process this point cloud directly to solve the de-
tection task.

Fusion architectures have also been proposed for 3D ob-
ject detection, combining information from multiple imag-
ing modalities [11]. Fusion generally occurs either in 2D
space or 3D space, and typically focuses on fusing camera
and LiDAR information. For 2D fusion, LiDAR data is pro-
cessed in either range view (LiDAR’s native view) [23] or
Bird’s Eye View (BEV) [18, 19, 32, 38] and fused with RGB
images. Cheng et al. [9] employ fusion in 3D space where
the sensor data is used to create a volumetric representation
and given as input to the fusion network. Road segmen-
tation tasks have also been performed using LiDAR and
camera fusion [3, 8, 21]. Other combinations of sensors,
e.g., RADARs and cameras, have been used recently for 3D
object detection [25, 26]. However, fusion with emerging
sensor technologies, like SP-LiDARs, have not received as
much attention.

2.3. Disparity Estimation

Unsupervised learning based approaches, such as [9],
perform depth estimation using a LiDAR and stereo cam-



Figure 2: Overview of our proposed model. We take as input raw sensor measurements from three sensors: a stereo camera
system, SP-LiDAR, and LiDAR. We first calculate a cost volume representation for each of the three sensory inputs (Sec-
tion 3.1). We then normalize these cost volumes and fuse them by addition (Section 3.2). Finally, we pass the fused volume
through a series of 3D CNNs that regress towards a disparity map of the scene.

era fusion architecture with noisy LiDAR points. Recently,
a lot of progress has been made in disparity estimation using
stereo image pairs [13, 14, 30, 39]. We formulate our prob-
lem of fusing multiple sensors for the task of disparity es-
timation. Specifically, we use PSMNet [4] as a base model
which is used for disparity estimation using a stereo image
pair. The model architecture first captures global contextual
information using spatial pyramid pooling layers, and pro-
duces a cost volume. The 3D convolution layers then reg-
ularize this cost volume using stacked multiple hourglass
networks.

We extend the PSMNet architecture to add fusion
branches for SP-LiDAR and a regular LiDAR, generating
cost volumes for each imaging modalities. Recently, Lin-
dell et al. [20] showcased that fusing information from
a SP-LiDAR and a high-resolution camera image signifi-
cantly improves depth estimation, even with low signal-to-
background noise ratio. However, their current architecture
does not handle information from stereo image pairs. We
therefore take inspiration from both [4] and [20] to propose
a novel fusion architecture that forms cost volume represen-
tation for a stereo camera system, SP-LiDAR, and LiDAR.

3. Proposed Approach
Our objective is to fuse sensor data obtained from mul-

tiple sources, and output a disparity map of the scene. The
core idea of our approach is to convert all sensor data into
volumetric representations of the scene, referred to as cost
volumes. Our 4D cost volumes (height × width × dispar-
ity × features) encode features over 3D space; specifically,
we discretize 3D space according to the spatial resolution
of our camera (height = 256, width = 512) across a range
of disparity values for a given baseline (disparity = 192).
We hypothesize that fusion can be done efficiently by first

lifting sensor data into this common representation of 3D
space. Moreover, this lifting operation can be extended to
other sensors as well, provided that there exists a logical
mapping of sensor data to its corresponding cost volume.

Figure 2 provides an overview of our proposed approach.
The input consists of a pair of 2D images from a stereo cam-
era system, a sparse 3D point cloud obtained by a LiDAR,
and a dense but noisy volume given by a SP-LiDAR; see
Figure 3 for visualizations of the input. First, we map the
sensor data to cost volumes. These volumes capture com-
plementary information of the same 3D scene. Second, we
pass each of these individual volumes through 3D CNNs
that learn respective features associated with each of these
volumes. Third, we normalize each of these volumes and
fuse them by addition. Normalization converts the cost vol-
ume to the same scale, thereby making fusion by addition
robust. Fourth, we pass the normalized-fused intermedi-
ate cost volume to a stacked hourglass architecture [4] and
regress towards a 2D disparity map.

In the remainder of this section, we describe the cost vol-
ume construction and sensor fusion network in more detail.

3.1. Cost Volume Constructions

Mono- and Stereo-Camera Systems We assume a stereo
camera system captures left and right RGB images with a
spatial resolution of 512 × 256 and a 90◦ horizontal field
of view. Given a camera baseline B and focal length f , the
disparity image d is

d =
Bf

z
(1)

where z is the corresponding depth map.
We follow the approach used in PSMNet [4] to construct

our initial cost volume from this stereo image pair. Left and
right images are first passed through a weight-sharing CNN



followed by spatial pyramid pooling layers to capture con-
textual information. The corresponding feature maps are
then concatenated across every disparity level to generate a
4D cost volume CVC , with dimension (height × width ×
disparity × features).

We can also construct a 4D cost volume for a monocular
camera, where only the left image is used as an input to
the network. The cost volume is constructed by replicating
the values in the image along the disparity dimension, and
passing the result through a 3D CNN network to generate
the 4D cost volume.

Note that all disparity maps and cost volumes are com-
puted with respect to the left camera.

LiDAR Systems We assume a 64 channel LiDAR cap-
tures a point cloud for a standard full 360◦ scan. Our objec-
tive is to lift the sparse LiDAR point cloud into a 4D cost
volume CVL, where the entries in both CVC and CVL rep-
resent the same points in 3D space. This will ensure that the
cost volumes are spatially compatible.

Let’s assume that the LiDAR and the left camera of the
stereo system share the same center of projection. We trim
the point cloud data to a 90◦ field of view to match our
left camera. The depth measurements obtained from Li-
DAR are then converted to the disparity domain by using
Equation (1). This produces a sparse 3D volume, where a
voxel with a value of 1 indicates the position of a 3D Li-
DAR point. Finally, we process the result with a 3D CNN
network to form our 4D cost volume CVL.

SP-LiDAR Systems We follow the same approach de-
scribed by Lindell et al. [20] to generate dense and noisy
SP-LiDAR volumes, except that we discretize our volumes
with respect to disparity levels instead of depth values.

In order to evaluate the robustness of our fusion strat-
egy, we explored three different signal-to-background ra-
tios (SBR) between the signal and ambient photons: SBR
0.052, SBR 0.0052 and SBR 0.00052.1 In each of these ex-
periments, we simulate SP-LiDAR data using just 1 signal
photon per pixel on average; as a result, the number of 3D
points captured with a SP-LiDAR is higher than a regular
LiDAR. We then add a number of random ambient photons
according to our target SBR value. For example, at a SBR
of 0.0052, there are 192 ambient photons (an average of 1
ambient photon per histogram bin).

Photons detected by a SP-LiDAR are modeled using a
Poissonian process [29]. Hence, in our SP-LiDAR simula-
tion, we introduce Poisson noise to both the signal and the
ambient light level to replicate the single-photon character-
istics. Figure 4 shows responses across different disparity

1We abbreviate these values as SBR 0.05, 0.005, and 0.0005 for the rest
of this paper. Note that these values represent noisier measurements than
those evaluated by Lindell et al. [20], where SBR was 1.0, 0.1, and 0.04.

Figure 3: Inputs to our proposed model. (a) Dense and
noisy volume representing photons detected with a SP-
LiDAR, using an SBR of 0.005. (b) Sparse point cloud from
a conventional LiDAR. (c) Left and right camera images of
the scene.

values for a few SBR values. Figure 4(a) represents the sce-
nario when there is no noise or ambient light, and hence the
position of the peak represents the disparity value (i.e., the
object’s distance from the SP-LiDAR). Figure 4(b-d) repre-
sents the same signal but with Poisson noise for SBR values
0.05, 0.005, and 0.0005 respectively. An increase in the
number of ambient photons produces a noisier SP-LiDAR
volume, hence making it more difficult to extract the correct
disparity values.

Our cost volume construction for SP-LiDARs is similar
to that of LiDARs. For every detected photon, we increment
by 1 the value of the corresponding voxel. This results in a
dense and noisy volume. This volume is once again passed
through 3D CNNs to generate the 4D feature volume CVS ,
sharing the same dimensions as the other cost volumes.



Figure 4: Visualization of one sample of SP-LiDAR data,
i.e., representing the signal received by a specific pixel. (a)
When no noise is present, the object reflects light back at a
specific time, which can be converted into a disparity value.
(b-d) In practice, the same signal shown in (a) is corrupted
by ambient photons, which arrive at random times. Here,
for the ground truth signal shown in (a), we illustrate three
different signal-to-background noise ratios: (b) SBR 0.05,
(c) SBR 0.005, and (d) SBR 0.0005.

3.2. Sensor Fusion Network

The last step of our pipeline is to combine and process
the individual cost volumes. Each of the cost volumes ob-
tained have the dimension (height × width × disparity ×
features), where the feature dimension has length 64. The
individual cost volumes are now instance normalized and
then added together to output a fusion vector (CVF ) of the
same size as these individual cost volumes.

CVF = Norm(CVC)+Norm(CVS)+Norm(CVL) (2)

The fused cost volume CVF is then passed to the stacked
hourglass 3D CNN architecture as described in [4]. This
is followed by an upsampling layer to output a 3D vector
of dimension (height × width × disparity) via bilinear in-
terpolation. Finally, as described in [14], we regress to the
disparity map of size (height × width).

Given the ground truth disparity d, the predicted dispar-
ity d̂, and the number of labeled pixels M , we minimize a
smooth L1 loss function [4]

L(d, d̂) =
1

M

M∑
i=1

SL1
(di − d̂i), (3)

where

SL1
(y) =

{
0.5y2, if |y| < 1,

|y| − 0.5, otherwise.

4. Experiments
Our proposed fusion algorithm is evaluated on data sim-

ulated with CARLA [10]. We also perform ablation stud-
ies with different sensor inputs to the fusion network and
evaluate the performance of each sensor combination. We
describe our dataset and its properties, followed by experi-
mental details. We then showcase our results, both quantita-
tively and qualitatively, and finally discuss the implications
of our proposed fusion approach.

Dataset SP-LiDAR LiDAR Stereo
nuScenes [2] 7 3 7

Argoverse [5] 7 3 3

Lyft Level 5 [15] 7 3 7

Waymo Dataset [1] 7 3 7

Ours (CARLA) 3 3 3

Table 1: Different datasets and available sensors.

4.1. CARLA Dataset

Recently, many real world datasets have been released
by various self driving car companies, a summary of which
is presented in Table 1. However, none of these datasets
capture SP-LiDAR measurements and only Argoverse [5]
provides stereo data. Moreover, our task is to fuse sensor
information to compute a disparity map of the scene, which
requires ground truth depth values to train our network; this
information is not directly available in real-world datasets.

We therefore collect our own data using CARLA, an
open source simulator designed to develop and test al-
gorithms for autonomous vehicle driving systems [10].
CARLA gives access to different virtual driving routes
where we can place other actors like vehicles, pedestrians,
and cyclists. For our data collection, we select one such ve-
hicle to drive in the autopilot mode around different driving
routes. We mount 4 different sensors on top of the vehicle
to capture scenes: two cameras to capture the stereo pair,
one LiDAR, and one depth sensor to capture the ground
truth disparity values. We simulate SP-LiDAR measure-
ments from the ground truth disparity values, as discussed
in Section 3.1.

Figure 5 shows sample frames captured in CARLA,
highlighting scene diversity. To make our dataset robust and
challenging, we collected data under different ambient con-
ditions and varying road traffic. Stereo images have a res-
olution of 256 × 512, and the LiDAR has 64 channels and
detects objects up to a range of 100m. In all, we captured
10,000 frames (8,000 for training and 2,000 for testing).

4.2. Experiment Details

Our proposed model is implemented in PyTorch, build-
ing on top of the current PSMNet architecture. Our network



Figure 5: Sample frames captured in CARLA. We captured
scenes under different ambient and traffic conditions.

is trained end-to-end with the Adam optimizer [16] with a
learning rate of 0.001. The maximum disparity value d is
192. To compare our fusion performance with stereo match-
ing networks, we use as our metric the average root mean
square error (RMSE) between the predicted and ground
truth disparity values. We also report the percentage of pix-
els that have disparity error greater than three pixels (>3px)
and one pixel (>1px) respectively. Our model is trained
from randomly initialized weights for each of the ablation
experiments (detailed in Section 4.3). Training time for the
network is approximately 24 hours on two NVIDIA RTX
2080Ti GPUs with a batch size of 4.

4.3. Ablation Experiments and Results

We divide our ablation studies into three sections and list
both quantitative and qualitative results. In Section 4.3.1,
we discuss the performance of the system when only one
sensor is given as input to the network. In Section 4.3.2, we
perform monocular + LiDAR and monocular + SP-LiDAR
fusion, and compare the performance of the two LiDARs.
Finally, in Section 4.3.3, we fuse stereo + LiDAR and stereo
+ SP-LiDAR, and compare the results with monocular fu-
sion. We also discuss the results of combining all available
sensors: stereo + SP-LiDAR + LiDAR.

4.3.1 Unimodal Experiments

In our first set of ablation experiments, we compute the dis-
parity map by utilizing only one modality at a time. This
is done by weighting the other input branches to zero in the
fusion network. Table 2 summarizes the results of different
single sensor experiments quantitatively and Figure 6 pro-
vides a qualitative analysis.

We observe that having just the LiDAR modality or a
single camera as independent inputs produce poor results.
The stereo camera and SP-LiDAR perform better, with low
average RMSE and low pixel error rates. For example, in
Figure 6, we observe that finer details like the inside of the
vehicle are captured more accurately for both SP-LiDAR
and the stereo camera. With a LiDAR or a monocular cam-
era, we observe a fair amount of noise, especially for distant
regions in the scene. We also compute the metrics for SP-
LiDAR with decreasing SBR values and observe that, al-

Experiment/Metric RMSE >3px >1px
Monocular 2.021 4.1 13.9

LiDAR 3.081 7.7 18.0
Stereo 1.719 3.0 10.2

SP-LiDAR (SBR 0.05) 1.576 2.3 6.9
SP-LiDAR (SBR 0.005) 1.610 2.3 7.4

SP-LiDAR (SBR
0.0005) 1.701 2.6 9.0

Table 2: Ablation experiments with single sensor input. Our
framework performs well for both SP-LiDAR and stereo
camera.

though the performance degrades slightly, SP-LiDAR per-
forms better than regular LiDAR even under poor ambient
light conditions.

4.3.2 Monocular Fusion Experiments

For the next set of experiments, we fuse a monocular cam-
era with either a LiDAR or SP-LiDAR. The quantitative re-
sults are presented in Table 3.

We observe that fusing LiDAR with a monocular camera
slightly improves all the metrics as opposed to using just
one sensor at a time, thus confirming that the fusion net-
work is leveraging complementary information from both
sensors. This can also be verified qualitatively in Figure 7;
finer geometric details, such as the shape of the vehicle, are
estimated more accurately.

Quantitatively, the fusion results of the SP-LiDAR +
monocular camera are better than LiDAR + monocular cam-
era fusion. Even with low SBR values, SP-LiDAR fusion
is more effective than LiDAR-based fusion. However, we
do not observe a significant improvement with monocular
+ SP-LiDAR fusion when compared to just SP-LiDAR. We
hypothesize that SP-LiDAR data captures both range and
spatial information fairly well, as can be seen in the volume
constructed in Figure 3; we notice little benefit in fusing
these measurements with a regular image in our framework.
Note that this experiment is similar to Lindell et al. [20]
work, which does improve depth reconstructions by fusing
a high-resolution image and the output of a SP-LiDAR.

4.3.3 Stereo Fusion Experiments

Finally, we fuse information from a stereo camera with the
LiDARs. Quantitative results are presented in Table 4. The
table shows that fusing stereo information with both LiDAR
and SP-LiDAR data significantly improves all the metrics.

SP-LiDAR and stereo fusion with a SBR of 0.05
achieves the best results. In Figure 8, under noisier settings
(SBR of 0.005), we observe that the tree trunk is not accu-
rately captured with any one sensor but the fusion of SP-



Figure 6: Qualitative results for the unimodal experiments. The SP-LiDAR and stereo camera capture finer geometric details
like the interior of a vehicle (see highlighted inset), when compared to the LiDAR and monocular camera. LiDAR also
produces noisy depth maps for distant regions in the scene as opposed to SP-LiDAR (highlighted by the arrow).

Figure 7: Qualitative fusion results of the two LiDARs with a monocular camera. Fusion captures finer details such as the
contour of the vehicle (see highlighted inset).

Figure 8: Qualitative fusion results of the two LiDARs with a stereo camera. Fine details like the trunk of the tree (see
highlighted inset) are captured accurately with sensor fusion.

Figure 9: Qualitative fusion results for all the three sensors combined: stereo + SP-LiDAR + LiDAR. The overall predicted
disparity map with three sensor fusion captures very intricate details and produces fewer artifacts when compared to any two
sensor fusion combination.



Experiment/Metric RMSE >3px >1px
LiDAR + Mono 2.017 3.7 12.3

SP-LiDAR + Mono
(SBR 0.05) 1.489 2.0 6.6

SP-LiDAR + Mono
(SBR 0.005) 1.670 2.3 7.1

SP-LiDAR + Mono
(SBR 0.0005) 1.684 2.6 9.0

Table 3: Ablation fusion experiments with monocular cam-
era and different LiDARs, based on Lindell et al. [20].

Experiment/Metric RMSE >3px >1px
LiDAR + Stereo 1.645 2.6 8.8

SP-LiDAR + Stereo
(SBR 0.05) 1.341 1.6 5.2

SP-LiDAR + Stereo
(SBR 0.005) 1.398 1.7 5.5

SP-LiDAR + Stereo
(SBR 0.0005) 1.570 2.1 7.3

SP-LiDAR + LiDAR +
Stereo (SBR 0.005) 1.453 1.9 5.3

Table 4: Ablation fusion experiments with stereo pair and
different LiDARs.

LiDAR and stereo information significantly improves per-
formance. Even at the lowest SBR value of 0.0005, the fu-
sion results shown in Table 4 achieves significant improve-
ments when compared to individual sensors, demonstrating
the effectiveness of our proposed fusion network.

To test the robustness of our proposed fusion architec-
ture, we also fuse all three input modalities, i.e., stereo +
SP-LiDAR + LiDAR using a SBR of 0.005. Qualitatively,
we observe that three sensor fusion significantly improves
the disparity maps. For example, in Figure 9, we find that
the base of the overhead bridge is captured accurately in
the three sensor fusion, when compared to two sensor fu-
sion. However, quantitatively, we do not find a significant
improvement in the metrics, with only the >1-pixel error
improving slightly. This may be attributed to how the Li-
DAR is simulated in CARLA, where the SP-LiDAR mea-
surements do not benefit from the inclusion of sparse Li-
DAR measurements.

4.4. Further Discussion

CARLA’s simulation of a standard LiDAR generates a
sparse point cloud, as shown in Figure 3, whereas the SP-
LiDAR simulation produces dense, noisy measurements.
We observe that denser data produces much better disparity
maps despite the additional noise, and is effective in fusion
experiments. In all our fusion experiments, a SP-LiDAR al-

ways produces the more accurate disparity map when com-
pared to a regular LiDAR.

RGB information comes from two sources: a monocu-
lar camera or a stereo camera. We show in our proposed
model that the cost volume constructed for a stereo camera
provides more reliable fusion results when compared to the
monocular case. Lindell et al. [20] showcased that fusing
a high-resolution camera with a SP-LiDAR improves depth
estimation results. Our proposed stereo + SP-LiDAR fusion
further improves results compared to monocular fusion, sig-
nificantly reducing disparity pixel error rates.

We perform various ablation experiments with different
sensor fusion combinations. We also observe that the sen-
sor combination SP-LiDAR + stereo produces equally good
results as the three sensor fusion combination. This may
be attributed to sparse LiDAR measurements not providing
much information beyond what is already captured with a
SP-LiDAR and stereo camera.

5. Conclusion
In this work, we present a fusion framework that takes

measurements from a heterogeneous sensor array, lifts them
to a shared 4D cost volume representing the surrounding
3D environment, and processes the result to obtain a high-
quality disparity map of the scene. We estimate these dis-
parity maps by fusing LiDARs, monocular cameras, stereo
cameras, and SP-LiDARs, and we conduct ablation exper-
iments to evaluate the results of different sensor combina-
tions. We also present a new simulated dataset that includes
measurements for all the sensors discussed in this paper.

In our experiments, multi-sensor fusion significantly im-
proves the depth prediction when compared to working with
a single sensor. We also observe that dense SP-LiDAR mea-
surements produce more accurate depth maps when com-
pared to sparse LiDAR point clouds, and stereo cameras
provide useful information for fusion over monocular cam-
eras. These observations are of critical importance when
designing the sensing capabilities of any self-driving car.

We believe that our proposed fusion architecture can be
extended to support other sensors as well, including ex-
isting RADAR technologies used for automotive applica-
tions and novel computational imaging systems that provide
unique 3D sensing capabilities (e.g., programmable light
curtains [36]). Importantly, we believe this fusion frame-
work can also be used to address higher-level vision tasks
such as 3D object detection and segmentation, and is an im-
portant step towards achieving full driving automation.
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